Title: | Probability Distribution Functions |
---|---|
Description: | Calculates expected values, variance, different moments (kth moment, truncated mean), stop-loss, mean excess loss, Value-at-Risk (VaR) and Tail Value-at-Risk (TVaR) as well as some density and cumulative (survival) functions of continuous, discrete and compound distributions. This package also includes a visual 'Shiny' component to enable students to visualize distributions and understand the impact of their parameters. This package is intended to expand the 'stats' package so as to enable students to develop an intuition for probability. |
Authors: | Alec James van Rassel [aut, cre, cph], Gabriel Crépeault-Cauchon [aut, ccp], Étienne Marceau [tch, sad], Hélène Cossette [tch, sad], Laboratoire Act & Risk [fnd, sht], École d'actuariat de l'Université Laval [fnd, his, uvp], Natural Sciences and Engineering Research Council of Canada [fnd], Marc-André Devost [ccp] |
Maintainer: | Alec James van Rassel <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.4.0 |
Built: | 2025-02-25 06:17:32 UTC |
Source: | https://github.com/alec42/distributacalcul_package |
Beta distribution with shape parameters and
.
expValBeta(shape1, shape2) varBeta(shape1, shape2) kthMomentBeta(k, shape1, shape2) expValLimBeta(d, shape1, shape2) expValTruncBeta(d, shape1, shape2, less.than.d = TRUE) stopLossBeta(d, shape1, shape2) meanExcessBeta(d, shape1, shape2) VatRBeta(kap, shape1, shape2) TVatRBeta(kap, shape1, shape2) mgfBeta(t, shape1, shape2, k0)
expValBeta(shape1, shape2) varBeta(shape1, shape2) kthMomentBeta(k, shape1, shape2) expValLimBeta(d, shape1, shape2) expValTruncBeta(d, shape1, shape2, less.than.d = TRUE) stopLossBeta(d, shape1, shape2) meanExcessBeta(d, shape1, shape2) VatRBeta(kap, shape1, shape2) TVatRBeta(kap, shape1, shape2) mgfBeta(t, shape1, shape2, k0)
shape1 |
shape parameter |
shape2 |
shape parameter |
k |
kth-moment. |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
t |
t. |
k0 |
point up to which to sum the distribution for the approximation. |
The Beta distribution with shape parameters and
has density:
for ,
.
Function :
expValBeta
gives the expected value.
varBeta
gives the variance.
kthMomentBeta
gives the kth moment.
expValLimBeta
gives the limited mean.
expValTruncBeta
gives the truncated mean.
stopLossBeta
gives the stop-loss.
meanExcessBeta
gives the mean excess loss.
VatRBeta
gives the Value-at-Risk.
TVatRBeta
gives the Tail Value-at-Risk.
mgfBeta
gives the moment generating function (MGF).
Invalid parameter values will return an error detailing which parameter is problematic.
Function VatRBeta is a wrapper for the qbeta
function from the stats package.
expValBeta(shape1 = 3, shape2 = 5) varBeta(shape1 = 4, shape2 = 5) kthMomentBeta(k = 3, shape1 = 4, shape2 = 5) expValLimBeta(d = 0.3, shape1 = 4, shape2 = 5) expValTruncBeta(d = 0.4, shape1 = 4, shape2 = 5) # Values less than d expValTruncBeta(d = 0.4, shape1 = 4, shape2 = 5, less.than.d = FALSE) stopLossBeta(d = 0.3, shape1 = 4, shape2 = 5) meanExcessBeta(d = .3, shape1 = 4, shape2 = 5) VatRBeta(kap = .99, shape1 = 4, shape2 = 5) TVatRBeta(kap = .99, shape1 = 4, shape2 = 5) mgfBeta(t = 1, shape1 = 3, shape2 = 5, k0 = 1E2)
expValBeta(shape1 = 3, shape2 = 5) varBeta(shape1 = 4, shape2 = 5) kthMomentBeta(k = 3, shape1 = 4, shape2 = 5) expValLimBeta(d = 0.3, shape1 = 4, shape2 = 5) expValTruncBeta(d = 0.4, shape1 = 4, shape2 = 5) # Values less than d expValTruncBeta(d = 0.4, shape1 = 4, shape2 = 5, less.than.d = FALSE) stopLossBeta(d = 0.3, shape1 = 4, shape2 = 5) meanExcessBeta(d = .3, shape1 = 4, shape2 = 5) VatRBeta(kap = .99, shape1 = 4, shape2 = 5) TVatRBeta(kap = .99, shape1 = 4, shape2 = 5) mgfBeta(t = 1, shape1 = 3, shape2 = 5, k0 = 1E2)
Binomial distribution with size and probability of
success
.
expValBinom(size, prob) varBinom(size, prob) expValTruncBinom(d, size, prob, less.than.d = TRUE) VatRBinom(kap, size, prob) TVatRBinom(kap, size, prob) pgfBinom(t, size, prob) mgfBinom(t, size, prob)
expValBinom(size, prob) varBinom(size, prob) expValTruncBinom(d, size, prob, less.than.d = TRUE) VatRBinom(kap, size, prob) TVatRBinom(kap, size, prob) pgfBinom(t, size, prob) mgfBinom(t, size, prob)
size |
Number of trials (0 or more). |
prob |
Probability of success in each trial. |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
t |
t. |
The binomial distribution with probability of success for
trials
has probability mass function :
for ,
, and
Function :
mgfBinom
gives the moment generating function (MGF).
pgfBinom
gives the probability generating function (PGF).
expValBinom
gives the expected value.
varBinom
gives the variance.
expValTruncBinom
gives the truncated mean.
TVatRBinom
gives the Tail Value-at-Risk.
VatRBinom
gives the Value-at-Risk.
Invalid parameter values will return an error detailing which parameter is problematic.
Function VatRBinom is a wrapper of the qbinom
function from the stats package.
expValBinom(size = 3, prob = 0.5) varBinom(size = 3, prob = 0.5) expValTruncBinom(d = 2, size = 3, prob = 0.5) expValTruncBinom(d = 0, size = 3, prob = 0.5, less.than.d = FALSE) VatRBinom(kap = 0.8, size = 5, prob = 0.2) TVatRBinom(kap = 0.8, size = 5, prob = 0.2) pgfBinom(t = 1, size = 3, prob = 0.5) mgfBinom(t = 1, size = 3, prob = 0.5)
expValBinom(size = 3, prob = 0.5) varBinom(size = 3, prob = 0.5) expValTruncBinom(d = 2, size = 3, prob = 0.5) expValTruncBinom(d = 0, size = 3, prob = 0.5, less.than.d = FALSE) VatRBinom(kap = 0.8, size = 5, prob = 0.2) TVatRBinom(kap = 0.8, size = 5, prob = 0.2) pgfBinom(t = 1, size = 3, prob = 0.5) mgfBinom(t = 1, size = 3, prob = 0.5)
Computes CDF, PDF and simulations of of the bivariate Ali-Mikhail-Haq copula.
cBivariateAMH(u1, u2, dependencyParameter, ...) cdBivariateAMH(u1, u2, dependencyParameter, ...) crBivariateAMH(numberSimulations = 10000, seed = 42, dependencyParameter)
cBivariateAMH(u1, u2, dependencyParameter, ...) cdBivariateAMH(u1, u2, dependencyParameter, ...) crBivariateAMH(numberSimulations = 10000, seed = 42, dependencyParameter)
u1 , u2
|
points at which to evaluate the copula. |
dependencyParameter |
correlation parameter. |
... |
other parameters. |
numberSimulations |
Number of simulations. |
seed |
Simulation seed, 42 by default. |
The bivariate Ali-Mikhail-Haq copula has CDF :
Function :
cBivariateAMH
returns the value of the copula.
cdBivariateAMH
returns the value of the density copula.
crBivariateAMH
returns simulated values of the copula.
cBivariateAMH(u1 = .76, u2 = 0.4, dependencyParameter = 0.4) cdBivariateAMH(u1 = .76, u2 = 0.4, dependencyParameter = 0.4) crBivariateAMH(numberSimulations = 10, seed = 42, dependencyParameter = 0.2)
cBivariateAMH(u1 = .76, u2 = 0.4, dependencyParameter = 0.4) cdBivariateAMH(u1 = .76, u2 = 0.4, dependencyParameter = 0.4) crBivariateAMH(numberSimulations = 10, seed = 42, dependencyParameter = 0.2)
Computes CDF and simulations of the bivariate Cuadras-Augé copula.
cBivariateCA(u1, u2, dependencyParameter, ...) crBivariateCA(numberSimulations = 10000, seed = 42, dependencyParameter)
cBivariateCA(u1, u2, dependencyParameter, ...) crBivariateCA(numberSimulations = 10000, seed = 42, dependencyParameter)
u1 , u2
|
points at which to evaluate the copula. |
dependencyParameter |
correlation parameter. |
... |
other parameters. |
numberSimulations |
Number of simulations. |
seed |
Simulation seed, 42 by default. |
The bivariate Cuadras-Augé copula has CDF :
for .
It is the geometric mean of the independance and upper Fréchet bound copulas.
Function :
cBivariateCA
returns the value of the copula.
crBivariateCA
returns simulated values of the copula.
cBivariateCA(u1 = .76, u2 = 0.4, dependencyParameter = 0.4) crBivariateCA(numberSimulations = 10, seed = 42, dependencyParameter = 0.2)
cBivariateCA(u1 = .76, u2 = 0.4, dependencyParameter = 0.4) crBivariateCA(numberSimulations = 10, seed = 42, dependencyParameter = 0.2)
Computes CDF, PDF and simulations of the bivariate Clayton copula.
cBivariateClayton(u1, u2, dependencyParameter, ...) cdBivariateClayton(u1, u2, dependencyParameter, ...) crBivariateClayton(numberSimulations = 10000, seed = 42, dependencyParameter)
cBivariateClayton(u1, u2, dependencyParameter, ...) cdBivariateClayton(u1, u2, dependencyParameter, ...) crBivariateClayton(numberSimulations = 10000, seed = 42, dependencyParameter)
u1 , u2
|
points at which to evaluate the copula. |
dependencyParameter |
correlation parameter. |
... |
other parameters. |
numberSimulations |
Number of simulations. |
seed |
Simulation seed, 42 by default. |
The bivariate Clayton copula has CDF :
Function :
cBivariateAMH
returns the value of the copula.
cdBivariateAMH
returns the value of the density function associated to the copula.
cBivariateClayton(u1 = .76, u2 = 0.4, dependencyParameter = 0.4) cdBivariateClayton(u1 = .76, u2 = 0.4, dependencyParameter = 0.4) crBivariateClayton(numberSimulations = 10, seed = 42, dependencyParameter = 0.2)
cBivariateClayton(u1 = .76, u2 = 0.4, dependencyParameter = 0.4) cdBivariateClayton(u1 = .76, u2 = 0.4, dependencyParameter = 0.4) crBivariateClayton(numberSimulations = 10, seed = 42, dependencyParameter = 0.2)
Computes CDF, PDF and simulations of the EFGM copula.
cBivariateEFGM(u1, u2, dependencyParameter) cdBivariateEFGM(u1, u2, dependencyParameter) crBivariateEFGM(numberSimulations = 10000, seed = 42, dependencyParameter)
cBivariateEFGM(u1, u2, dependencyParameter) cdBivariateEFGM(u1, u2, dependencyParameter) crBivariateEFGM(numberSimulations = 10000, seed = 42, dependencyParameter)
u1 , u2
|
points at which to evaluate the copula. |
dependencyParameter |
correlation parameter. |
numberSimulations |
Number of simulations. |
seed |
Simulation seed, 42 by default. |
The EFGM copula has CDF :
Function :
cBivariateEFGM
returns the value of the copula.
cdBivariateEFGM
returns the value of the density function associated to the copula.
crBivariateEFGM
returns simulated values of the copula.
cBivariateEFGM(u1 = .76, u2 = 0.4, dependencyParameter = 0.4) cdBivariateEFGM(u1 = .76, u2 = 0.4, dependencyParameter = 0.4) crBivariateEFGM(numberSimulations = 10, seed = 42, dependencyParameter = 0.2)
cBivariateEFGM(u1 = .76, u2 = 0.4, dependencyParameter = 0.4) cdBivariateEFGM(u1 = .76, u2 = 0.4, dependencyParameter = 0.4) crBivariateEFGM(numberSimulations = 10, seed = 42, dependencyParameter = 0.2)
Computes CDF, PDF and simulations of the bivariate Frank copula.
cBivariateFrank(u1, u2, dependencyParameter, ...) cdBivariateFrank(u1, u2, dependencyParameter, ...) crBivariateFrank(numberSimulations = 10000, seed = 42, dependencyParameter)
cBivariateFrank(u1, u2, dependencyParameter, ...) cdBivariateFrank(u1, u2, dependencyParameter, ...) crBivariateFrank(numberSimulations = 10000, seed = 42, dependencyParameter)
u1 , u2
|
points at which to evaluate the copula. |
dependencyParameter |
correlation parameter. |
... |
other parameters. |
numberSimulations |
Number of simulations. |
seed |
Simulation seed, 42 by default. |
The bivariate Frank copula has CDF :
Function :
cBivariateFrank
returns the value of the copula.
cdBivariateFrank
returns the value of the density function associated to the copula.
crBivariateFrank
returns simulated values of the copula.
cBivariateFrank(u1 = .76, u2 = 0.4, dependencyParameter = 0.4) cdBivariateFrank(u1 = .76, u2 = 0.4, dependencyParameter = 0.4) crBivariateFrank(numberSimulations = 10, seed = 42, dependencyParameter = 0.2)
cBivariateFrank(u1 = .76, u2 = 0.4, dependencyParameter = 0.4) cdBivariateFrank(u1 = .76, u2 = 0.4, dependencyParameter = 0.4) crBivariateFrank(numberSimulations = 10, seed = 42, dependencyParameter = 0.2)
Computes CDF, PDF and simulations of the bivariate Gumbel copula.
cBivariateGumbel(u1, u2, dependencyParameter, ...) cdBivariateGumbel(u1, u2, dependencyParameter, ...) crBivariateGumbel(numberSimulations = 10000, seed = 42, dependencyParameter)
cBivariateGumbel(u1, u2, dependencyParameter, ...) cdBivariateGumbel(u1, u2, dependencyParameter, ...) crBivariateGumbel(numberSimulations = 10000, seed = 42, dependencyParameter)
u1 , u2
|
points at which to evaluate the copula. |
dependencyParameter |
correlation parameter. |
... |
other parameters. |
numberSimulations |
Number of simulations. |
seed |
Simulation seed, 42 by default. |
The bivariate Gumbel copula has CDF :
Function :
cBivariateGumbel
returns the value of the copula.
cdBivariateGumbel
returns the value of the density function associated to the copula.
crBivariateGumbel
returns simulated values of the copula.
cBivariateGumbel(u1 = .76, u2 = 0.4, dependencyParameter = 1.4) cdBivariateGumbel(u1 = .76, u2 = 0.4, dependencyParameter = 1.4) crBivariateGumbel(numberSimulations = 10, seed = 42, dependencyParameter = 1.2)
cBivariateGumbel(u1 = .76, u2 = 0.4, dependencyParameter = 1.4) cdBivariateGumbel(u1 = .76, u2 = 0.4, dependencyParameter = 1.4) crBivariateGumbel(numberSimulations = 10, seed = 42, dependencyParameter = 1.2)
Computes CDF and simulations of the bivariate Marshall-Olkin copula.
cBivariateMO(u1, u2, dependencyParameter, ...) crBivariateMO(numberSimulations = 10000, seed = 42, dependencyParameter)
cBivariateMO(u1, u2, dependencyParameter, ...) crBivariateMO(numberSimulations = 10000, seed = 42, dependencyParameter)
u1 , u2
|
points at which to evaluate the copula. |
dependencyParameter |
correlation parameters, must be vector of length 2. |
... |
other parameters. |
numberSimulations |
Number of simulations. |
seed |
Simulation seed, 42 by default. |
The bivariate Marshall-Olkin copula has CDF :
for .
It is the geometric mean of the independance and upper Fréchet bound copulas.
Function :
cBivariateMO
returns the value of the copula.
crBivariateMO
returns simulated values of the copula.
cBivariateMO(u1 = .76, u2 = 0.4, dependencyParameter = c(0.4, 0.3)) crBivariateMO(numberSimulations = 10, seed = 42, dependencyParameter = c(0.2, 0.5))
cBivariateMO(u1 = .76, u2 = 0.4, dependencyParameter = c(0.4, 0.3)) crBivariateMO(numberSimulations = 10, seed = 42, dependencyParameter = c(0.2, 0.5))
Computes various risk measures (mean, variance, Value-at-Risk (VaR), and Tail Value-at-Risk (TVaR)) for the compound Binomial distribution.
pCompBinom( x, size, prob, shape, rate = 1/scale, scale = 1/rate, k0, distr_severity = "Gamma" ) expValCompBinom( size, prob, shape, rate = 1/scale, scale = 1/rate, distr_severity = "Gamma" ) varCompBinom( size, prob, shape, rate = 1/scale, scale = 1/rate, distr_severity = "Gamma" ) VatRCompBinom( kap, size, prob, shape, rate = 1/scale, scale = 1/rate, k0, distr_severity = "Gamma" ) TVatRCompBinom( kap, size, prob, shape, rate = 1/scale, scale = 1/rate, vark, k0, distr_severity = "Gamma" )
pCompBinom( x, size, prob, shape, rate = 1/scale, scale = 1/rate, k0, distr_severity = "Gamma" ) expValCompBinom( size, prob, shape, rate = 1/scale, scale = 1/rate, distr_severity = "Gamma" ) varCompBinom( size, prob, shape, rate = 1/scale, scale = 1/rate, distr_severity = "Gamma" ) VatRCompBinom( kap, size, prob, shape, rate = 1/scale, scale = 1/rate, k0, distr_severity = "Gamma" ) TVatRCompBinom( kap, size, prob, shape, rate = 1/scale, scale = 1/rate, vark, k0, distr_severity = "Gamma" )
x |
vector of quantiles |
size |
Number of trials (0 or more). |
prob |
Probability of success in each trial. |
shape |
shape parameter |
rate |
rate parameter |
scale |
alternative parameterization to the rate parameter, scale = 1 / rate. |
k0 |
point up to which to sum the distribution for the approximation. |
distr_severity |
Choice of severity distribution.
|
kap |
probability. |
vark |
Value-at-Risk (VaR) calculated at the given probability kap. |
The compound binomial distribution has density ....
Function :
pCompBinom
gives the cumulative density function.
expValCompBinom
gives the expected value.
varCompBinom
gives the variance.
TVatRCompBinom
gives the Tail Value-at-Risk.
VatRCompBinom
gives the Value-at-Risk.
Returned values are approximations for the cumulative density function, TVaR, and VaR.
pCompBinom(x = 2, size = 1, prob = 0.2, shape = log(1000) - 0.405, rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma") expValCompBinom(size = 1, prob = 0.2, shape = log(1000) - 0.405, rate = 0.9^2, distr_severity = "Lognormale") varCompBinom(size = 1, prob = 0.2, shape = log(1000) - 0.405, rate = 0.9^2, distr_severity = "Lognormale") VatRCompBinom(kap = 0.9, size = 1, prob = 0.2, shape = log(1000) - 0.405, rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma") vark_calc <- VatRCompBinom(kap = 0.9, size = 1, prob = 0.2, shape = 0.59, rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma") TVatRCompBinom(kap = 0.9, size = 1, prob = 0.2, shape = 0.59, rate = 0.9^2, vark = vark_calc, k0 = 1E2, distr_severity = "Gamma")
pCompBinom(x = 2, size = 1, prob = 0.2, shape = log(1000) - 0.405, rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma") expValCompBinom(size = 1, prob = 0.2, shape = log(1000) - 0.405, rate = 0.9^2, distr_severity = "Lognormale") varCompBinom(size = 1, prob = 0.2, shape = log(1000) - 0.405, rate = 0.9^2, distr_severity = "Lognormale") VatRCompBinom(kap = 0.9, size = 1, prob = 0.2, shape = log(1000) - 0.405, rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma") vark_calc <- VatRCompBinom(kap = 0.9, size = 1, prob = 0.2, shape = 0.59, rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma") TVatRCompBinom(kap = 0.9, size = 1, prob = 0.2, shape = 0.59, rate = 0.9^2, vark = vark_calc, k0 = 1E2, distr_severity = "Gamma")
Computes various risk measures (mean, variance, Value-at-Risk (VatR), and Tail Value-at-Risk (TVatR)) for the compound Negative Binomial distribution.
pCompNBinom( x, size, prob, shape, rate = 1/scale, scale = 1/rate, k0, distr_severity = "Gamma" ) expValCompNBinom( size, prob, shape, rate = 1/scale, scale = 1/rate, distr_severity = "Gamma" ) varCompNBinom( size, prob, shape, rate = 1/scale, scale = 1/rate, distr_severity = "Gamma" ) VatRCompNBinom( kap, size, prob, shape, rate = 1/scale, scale = 1/rate, k0, distr_severity = "Gamma" ) TVatRCompNBinom( kap, vark, size, prob, shape, rate = 1/scale, scale = 1/rate, k0, distr_severity = "Gamma" )
pCompNBinom( x, size, prob, shape, rate = 1/scale, scale = 1/rate, k0, distr_severity = "Gamma" ) expValCompNBinom( size, prob, shape, rate = 1/scale, scale = 1/rate, distr_severity = "Gamma" ) varCompNBinom( size, prob, shape, rate = 1/scale, scale = 1/rate, distr_severity = "Gamma" ) VatRCompNBinom( kap, size, prob, shape, rate = 1/scale, scale = 1/rate, k0, distr_severity = "Gamma" ) TVatRCompNBinom( kap, vark, size, prob, shape, rate = 1/scale, scale = 1/rate, k0, distr_severity = "Gamma" )
x |
vector of quantiles |
size |
Number of successful trials. |
prob |
Probability of success in each trial. |
shape |
shape parameter |
rate |
rate parameter |
scale |
alternative parameterization to the rate parameter, scale = 1 / rate. |
k0 |
point up to which to sum the distribution for the approximation. |
distr_severity |
Choice of severity distribution.
|
kap |
probability. |
vark |
Value-at-Risk (VaR) calculated at the given probability kap. |
The compound negative binomial distribution has density ....
Function :
pCompNBinom
gives the cumulative density function.
expValCompNBinom
gives the expected value.
varCompNBinom
gives the variance.
TVatRCompNBinom
gives the Tail Value-at-Risk.
VatRCompNBinom
gives the Value-at-Risk.
Returned values are approximations for the cumulative density function, TVatR, and VatR.
pCompNBinom(x = 2, size = 1, prob = 0.2, shape = log(1000) - 0.405, rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma") expValCompNBinom(size = 4, prob = 0.2, shape = 0, scale = 1, distr_severity = "Lognormal") varCompNBinom(size = 1, prob = 0.2, shape = log(1000) - 0.405, rate = 0.9^2, distr_severity = "Lognormale") VatRCompNBinom(kap = 0.9, size = 1, prob = 0.2, shape = 0.59, rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma") vark_calc <- VatRCompNBinom(kap = 0.9, size = 1, prob = 0.2, shape = 0.59, rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma") TVatRCompNBinom(kap = 0.9, size = 1, prob = 0.2, shape = 0.59, rate = 0.9^2, vark = vark_calc, k0 = 1E2, distr_severity = "Gamma")
pCompNBinom(x = 2, size = 1, prob = 0.2, shape = log(1000) - 0.405, rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma") expValCompNBinom(size = 4, prob = 0.2, shape = 0, scale = 1, distr_severity = "Lognormal") varCompNBinom(size = 1, prob = 0.2, shape = log(1000) - 0.405, rate = 0.9^2, distr_severity = "Lognormale") VatRCompNBinom(kap = 0.9, size = 1, prob = 0.2, shape = 0.59, rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma") vark_calc <- VatRCompNBinom(kap = 0.9, size = 1, prob = 0.2, shape = 0.59, rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma") TVatRCompNBinom(kap = 0.9, size = 1, prob = 0.2, shape = 0.59, rate = 0.9^2, vark = vark_calc, k0 = 1E2, distr_severity = "Gamma")
Computes various risk measures (mean, variance, Value-at-Risk (VaR), and Tail Value-at-Risk (TVaR)) for the compound Poisson distribution.
pCompPois( x, lambda, shape, rate = 1/scale, scale = 1/rate, k0, distr_severity = "Gamma" ) expValCompPois( lambda, shape, rate = 1/scale, scale = 1/rate, distr_severity = "Gamma" ) varCompPois( lambda, shape, rate = 1/scale, scale = 1/rate, distr_severity = "Gamma" ) VatRCompPois( kap, lambda, shape, rate = 1/scale, scale = 1/rate, k0, distr_severity = "Gamma" ) TVatRCompPois( kap, lambda, shape, rate = 1/scale, scale = 1/rate, vark, k0, distr_severity = "Gamma" )
pCompPois( x, lambda, shape, rate = 1/scale, scale = 1/rate, k0, distr_severity = "Gamma" ) expValCompPois( lambda, shape, rate = 1/scale, scale = 1/rate, distr_severity = "Gamma" ) varCompPois( lambda, shape, rate = 1/scale, scale = 1/rate, distr_severity = "Gamma" ) VatRCompPois( kap, lambda, shape, rate = 1/scale, scale = 1/rate, k0, distr_severity = "Gamma" ) TVatRCompPois( kap, lambda, shape, rate = 1/scale, scale = 1/rate, vark, k0, distr_severity = "Gamma" )
x |
vector of quantiles |
lambda |
Rate parameter |
shape |
shape parameter |
rate |
rate parameter |
scale |
alternative parameterization to the rate parameter, scale = 1 / rate. |
k0 |
point up to which to sum the distribution for the approximation. |
distr_severity |
Choice of severity distribution.
|
kap |
probability. |
vark |
Value-at-Risk (VaR) calculated at the given probability kap. |
The compound Poisson distribution with parameters ... has density ....
Function :
pCompPois
gives the cumulative density function.
expValCompPois
gives the expected value.
varCompPois
gives the variance.
TVatRCompPois
gives the Tail Value-at-Risk.
VatRCompPois
gives the Value-at-Risk.
Returned values are approximations for the cumulative density function, TVaR, and VaR.
pCompPois(x = 2, lambda = 2, shape = log(1000) - 0.405, rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma") expValCompPois(lambda = 2, shape = log(1000) - 0.405, rate = 0.9^2, distr_severity = "Lognormale") varCompPois(lambda = 2, shape = log(1000) - 0.405, rate = 0.9^2, distr_severity = "Lognormale") VatRCompPois(kap = 0.9, lambda = 2, shape = log(1000) - 0.405, rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma") vark_calc <- VatRCompPois(kap = 0.9, lambda = 2, shape = 0.59, rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma") TVatRCompPois(kap = 0.9, lambda = 2, shape = 0.59, rate = 0.9^2, vark = vark_calc, k0 = 1E2, distr_severity = "Gamma")
pCompPois(x = 2, lambda = 2, shape = log(1000) - 0.405, rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma") expValCompPois(lambda = 2, shape = log(1000) - 0.405, rate = 0.9^2, distr_severity = "Lognormale") varCompPois(lambda = 2, shape = log(1000) - 0.405, rate = 0.9^2, distr_severity = "Lognormale") VatRCompPois(kap = 0.9, lambda = 2, shape = log(1000) - 0.405, rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma") vark_calc <- VatRCompPois(kap = 0.9, lambda = 2, shape = 0.59, rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma") TVatRCompPois(kap = 0.9, lambda = 2, shape = 0.59, rate = 0.9^2, vark = vark_calc, k0 = 1E2, distr_severity = "Gamma")
Hypergeometric distribution where we have a sample of k balls from an urn containing N, of which m are white and n are black.
expValErl(N = n + m, m, n = N - m, k) varErl(N = n + m, m, n = N - m, k)
expValErl(N = n + m, m, n = N - m, k) varErl(N = n + m, m, n = N - m, k)
N |
Total number of balls (white and black) in the urn. |
m |
Number of white balls in the urn. |
n |
Number of black balls in the urn. Can specify n instead of N. |
k |
Number of balls drawn from the urn, k = 0, 1, ..., m + n. |
The Hypergeometric distribution for total items of which
are of one type and
of the other and from which
items are picked has probability mass function :
for .
Function :
Invalid parameter values will return an error detailing which parameter is problematic.
# With total balls specified expValErl(N = 5, m = 2, k = 2) # With number of each colour of balls specified expValErl(m = 2, n = 3, k = 2) # With total balls specified varErl(N = 5, m = 2, k = 2) # With number of each colour of balls specified varErl(m = 2, n = 3, k = 2)
# With total balls specified expValErl(N = 5, m = 2, k = 2) # With number of each colour of balls specified expValErl(m = 2, n = 3, k = 2) # With total balls specified varErl(N = 5, m = 2, k = 2) # With number of each colour of balls specified varErl(m = 2, n = 3, k = 2)
Erlang distribution with shape parameter and rate parameter
.
dErlang(x, shape, rate = 1/scale, scale = 1/rate) pErlang(q, shape, rate = 1/scale, scale = 1/rate, lower.tail = TRUE) expValErlang(shape, rate = 1/scale, scale = 1/rate) varErlang(shape, rate = 1/scale, scale = 1/rate) kthMomentErlang(k, shape, rate = 1/scale, scale = 1/rate) expValLimErlang(d, shape, rate = 1/scale, scale = 1/rate) expValTruncErlang(d, shape, rate = 1/scale, scale = 1/rate, less.than.d = TRUE) stopLossErlang(d, shape, rate = 1/scale, scale = 1/rate) meanExcessErlang(d, shape, rate = 1/scale, scale = 1/rate) VatRErlang(kap, shape, rate = 1/scale, scale = 1/rate) TVatRErlang(kap, shape, rate = 1/scale, scale = 1/rate) mgfErlang(t, shape, rate = 1/scale, scale = 1/rate)
dErlang(x, shape, rate = 1/scale, scale = 1/rate) pErlang(q, shape, rate = 1/scale, scale = 1/rate, lower.tail = TRUE) expValErlang(shape, rate = 1/scale, scale = 1/rate) varErlang(shape, rate = 1/scale, scale = 1/rate) kthMomentErlang(k, shape, rate = 1/scale, scale = 1/rate) expValLimErlang(d, shape, rate = 1/scale, scale = 1/rate) expValTruncErlang(d, shape, rate = 1/scale, scale = 1/rate, less.than.d = TRUE) stopLossErlang(d, shape, rate = 1/scale, scale = 1/rate) meanExcessErlang(d, shape, rate = 1/scale, scale = 1/rate) VatRErlang(kap, shape, rate = 1/scale, scale = 1/rate) TVatRErlang(kap, shape, rate = 1/scale, scale = 1/rate) mgfErlang(t, shape, rate = 1/scale, scale = 1/rate)
x , q
|
vector of quantiles. |
shape |
shape parameter |
rate |
rate parameter |
scale |
alternative parameterization to the rate parameter, scale = 1 / rate. |
lower.tail |
logical; if TRUE (default), probabilities are
|
k |
kth-moment. |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
t |
t. |
The Erlang distribution with shape parameter and rate parameter
has density:
for ,
,
.
Function :
dErlang
gives the probability density function (PDF).
pErlang
gives the cumulative density function (CDF).
expValErlang
gives the expected value.
varErlang
gives the variance.
kthMomentErlang
gives the kth moment.
expValLimErlang
gives the limited mean.
expValTruncErlang
gives the truncated mean.
stopLossErlang
gives the stop-loss.
meanExcessErlang
gives the mean excess loss.
VatRErlang
gives the Value-at-Risk.
TVatRErlang
gives the Tail Value-at-Risk.
mgfErlang
gives the moment generating function (MGF).
Invalid parameter values will return an error detailing which parameter is problematic.
Function VatRErlang is a wrapper of the qgamma
function from the stats package.
dErlang(x = 2, shape = 2, scale = 4) pErlang(q = 2, shape = 2, scale = 4) expValErlang(shape = 2, scale = 4) varErlang(shape = 2, scale = 4) kthMomentErlang(k = 3, shape = 2, scale = 4) expValLimErlang(d = 2, shape = 2, scale = 4) # With rate parameter expValTruncErlang(d = 2, shape = 2, scale = 4) # Values greater than d expValTruncErlang(d = 2, shape = 2, scale = 4, less.than.d = FALSE) stopLossErlang(d = 2, shape = 2, scale = 4) meanExcessErlang(d = 3, shape = 2, scale = 4) # With scale parameter VatRErlang(kap = .2, shape = 2, scale = 4) # With rate parameter VatRErlang(kap = .2, shape = 2, rate = 0.25) # With scale parameter TVatRErlang(kap = .2, shape = 3, scale = 4) # With rate parameter TVatRErlang(kap = .2, shape = 3, rate = 0.25) mgfErlang(t = 2, shape = 2, scale = .25)
dErlang(x = 2, shape = 2, scale = 4) pErlang(q = 2, shape = 2, scale = 4) expValErlang(shape = 2, scale = 4) varErlang(shape = 2, scale = 4) kthMomentErlang(k = 3, shape = 2, scale = 4) expValLimErlang(d = 2, shape = 2, scale = 4) # With rate parameter expValTruncErlang(d = 2, shape = 2, scale = 4) # Values greater than d expValTruncErlang(d = 2, shape = 2, scale = 4, less.than.d = FALSE) stopLossErlang(d = 2, shape = 2, scale = 4) meanExcessErlang(d = 3, shape = 2, scale = 4) # With scale parameter VatRErlang(kap = .2, shape = 2, scale = 4) # With rate parameter VatRErlang(kap = .2, shape = 2, rate = 0.25) # With scale parameter TVatRErlang(kap = .2, shape = 3, scale = 4) # With rate parameter TVatRErlang(kap = .2, shape = 3, rate = 0.25) mgfErlang(t = 2, shape = 2, scale = .25)
Exponential distribution with rate parameter .
expValExp(rate = 1/scale, scale = 1/rate) varExp(rate = 1/scale, scale = 1/rate) kthMomentExp(k, rate = 1/scale, scale = 1/rate) expValLimExp(d, rate = 1/scale, scale = 1/rate) expValTruncExp(d, rate = 1/scale, scale = 1/rate, less.than.d = TRUE) stopLossExp(d, rate = 1/scale, scale = 1/rate) meanExcessExp(d, rate = 1/scale, scale = 1/rate) VatRExp(kap, rate = 1/scale, scale = 1/rate) TVatRExp(kap, rate = 1/scale, scale = 1/rate) mgfExp(t, rate = 1/scale, scale = 1/rate)
expValExp(rate = 1/scale, scale = 1/rate) varExp(rate = 1/scale, scale = 1/rate) kthMomentExp(k, rate = 1/scale, scale = 1/rate) expValLimExp(d, rate = 1/scale, scale = 1/rate) expValTruncExp(d, rate = 1/scale, scale = 1/rate, less.than.d = TRUE) stopLossExp(d, rate = 1/scale, scale = 1/rate) meanExcessExp(d, rate = 1/scale, scale = 1/rate) VatRExp(kap, rate = 1/scale, scale = 1/rate) TVatRExp(kap, rate = 1/scale, scale = 1/rate) mgfExp(t, rate = 1/scale, scale = 1/rate)
rate |
rate parameter |
scale |
alternative parameterization to the rate parameter, scale = 1 / rate. |
k |
kth-moment. |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
t |
t. |
The Exponential distribution with rate parameter has density:
for ,
.
Function :
expValExp
gives the expected value.
varExp
gives the variance.
kthMomentExp
gives the kth moment.
expValLimExp
gives the limited mean.
expValTruncExp
gives the truncated mean.
stopLossExp
gives the stop-loss.
meanExcessExp
gives the mean excess loss.
VatRExp
gives the Value-at-Risk.
TVatRExp
gives the Tail Value-at-Risk.
mgfExp
gives the moment generating function (MGF).
Invalid parameter values will return an error detailing which parameter is problematic.
Function VatRExp is a wrapper of the qexp
function from the stats package.
# With scale parameter expValExp(scale = 4) # With rate parameter expValExp(rate = 0.25) # With scale parameter varExp(scale = 4) # With rate parameter varExp(rate = 0.25) # With scale parameter kthMomentExp(k = 2, scale = 4) # With rate parameter kthMomentExp(k = 2, rate = 0.25) # With scale parameter expValLimExp(d = 2, scale = 4) # With rate parameter expValLimExp(d = 2, rate = 0.25) # With scale parameter expValTruncExp(d = 2, scale = 4) # With rate parameter, values greater than d expValTruncExp(d = 2, rate = 0.25, less.than.d = FALSE) # With scale parameter stopLossExp(d = 2, scale = 4) # With rate parameter stopLossExp(d = 2, rate = 0.25) # With scale parameter meanExcessExp(d = 2, scale = 4) # With rate parameter meanExcessExp(d = 5, rate = 0.25) # With scale parameter VatRExp(kap = .99, scale = 4) # With rate parameter VatRExp(kap = .99, rate = 0.25) # With scale parameter TVatRExp(kap = .99, scale = 4) # With rate parameter TVatRExp(kap = .99, rate = 0.25) mgfExp(t = 1, rate = 5)
# With scale parameter expValExp(scale = 4) # With rate parameter expValExp(rate = 0.25) # With scale parameter varExp(scale = 4) # With rate parameter varExp(rate = 0.25) # With scale parameter kthMomentExp(k = 2, scale = 4) # With rate parameter kthMomentExp(k = 2, rate = 0.25) # With scale parameter expValLimExp(d = 2, scale = 4) # With rate parameter expValLimExp(d = 2, rate = 0.25) # With scale parameter expValTruncExp(d = 2, scale = 4) # With rate parameter, values greater than d expValTruncExp(d = 2, rate = 0.25, less.than.d = FALSE) # With scale parameter stopLossExp(d = 2, scale = 4) # With rate parameter stopLossExp(d = 2, rate = 0.25) # With scale parameter meanExcessExp(d = 2, scale = 4) # With rate parameter meanExcessExp(d = 5, rate = 0.25) # With scale parameter VatRExp(kap = .99, scale = 4) # With rate parameter VatRExp(kap = .99, rate = 0.25) # With scale parameter TVatRExp(kap = .99, scale = 4) # With rate parameter TVatRExp(kap = .99, rate = 0.25) mgfExp(t = 1, rate = 5)
Computes CDF and simulations of the Fréchet copula.
cFrechet(u1, u2, dependencyParameter, ...) crFrechet(numberSimulations = 10000, seed = 42, dependencyParameter)
cFrechet(u1, u2, dependencyParameter, ...) crFrechet(numberSimulations = 10000, seed = 42, dependencyParameter)
u1 , u2
|
points at which to evaluate the copula. |
dependencyParameter |
correlation parameters, must be vector of length 2. |
... |
other parameters. |
numberSimulations |
Number of simulations. |
seed |
Simulation seed, 42 by default. |
The Fréchet copula has CDF :
for
and
.
Function :
cFrechet(u1 = .76, u2 = 0.4, dependencyParameter = c(0.2, 0.3)) crFrechet(numberSimulations = 10, seed = 42, dependencyParameter = c(0.2, 0.3))
cFrechet(u1 = .76, u2 = 0.4, dependencyParameter = c(0.2, 0.3)) crFrechet(numberSimulations = 10, seed = 42, dependencyParameter = c(0.2, 0.3))
Computes CDF and simulations of the Fréchet lower bound copula.
cFrechetLowerBound(u1, u2, ...) crFrechetLowerBound(numberSimulations = 10000, seed = 42)
cFrechetLowerBound(u1, u2, ...) crFrechetLowerBound(numberSimulations = 10000, seed = 42)
u1 , u2
|
points at which to evaluate the copula. |
... |
other parameters. |
numberSimulations |
Number of simulations. |
seed |
Simulation seed, 42 by default. |
The Fréchet lower bound copula has CDF :
for .
Function :
cFrechetLowerBound
returns the value of the copula.
crFrechetLowerBound
returns simulated values of the copula.
cFrechetLowerBound(u1 = .76, u2 = 0.4) crFrechetLowerBound(numberSimulations = 10, seed = 42)
cFrechetLowerBound(u1 = .76, u2 = 0.4) crFrechetLowerBound(numberSimulations = 10, seed = 42)
Computes CDF and simulations of the Fréchet upper bound copula.
cFrechetUpperBound(u1, u2, ...) crFrechetUpperBound(numberSimulations = 10000, seed = 42)
cFrechetUpperBound(u1, u2, ...) crFrechetUpperBound(numberSimulations = 10000, seed = 42)
u1 , u2
|
points at which to evaluate the copula. |
... |
other parameters. |
numberSimulations |
Number of simulations. |
seed |
Simulation seed, 42 by default. |
The Fréchet upper bound copula has CDF :
for .
Function :
cFrechetUpperBound
returns the value of the copula.
crFrechetUpperBound
returns simulated values of the copula.
cFrechetUpperBound(u1 = .56, u2 = 0.4) crFrechetUpperBound(numberSimulations = 10, seed = 42)
cFrechetUpperBound(u1 = .56, u2 = 0.4) crFrechetUpperBound(numberSimulations = 10, seed = 42)
Gamma distribution with shape parameter and rate
parameter
.
expValGamma(shape, rate = 1/scale, scale = 1/rate) varGamma(shape, rate = 1/scale, scale = 1/rate) kthMomentGamma(k, shape, rate = 1/scale, scale = 1/rate) expValLimGamma(d, shape, rate = 1/scale, scale = 1/rate) expValTruncGamma(d, shape, rate = 1/scale, scale = 1/rate, less.than.d = TRUE) stopLossGamma(d, shape, rate = 1/scale, scale = 1/rate) meanExcessGamma(d, shape, rate = 1/scale, scale = 1/rate) VatRGamma(kap, shape, rate = 1/scale, scale = 1/rate) TVatRGamma(kap, shape, rate = 1/scale, scale = 1/rate) mgfGamma(t, shape, rate = 1/scale, scale = 1/rate)
expValGamma(shape, rate = 1/scale, scale = 1/rate) varGamma(shape, rate = 1/scale, scale = 1/rate) kthMomentGamma(k, shape, rate = 1/scale, scale = 1/rate) expValLimGamma(d, shape, rate = 1/scale, scale = 1/rate) expValTruncGamma(d, shape, rate = 1/scale, scale = 1/rate, less.than.d = TRUE) stopLossGamma(d, shape, rate = 1/scale, scale = 1/rate) meanExcessGamma(d, shape, rate = 1/scale, scale = 1/rate) VatRGamma(kap, shape, rate = 1/scale, scale = 1/rate) TVatRGamma(kap, shape, rate = 1/scale, scale = 1/rate) mgfGamma(t, shape, rate = 1/scale, scale = 1/rate)
shape |
shape parameter |
rate |
rate parameter |
scale |
alternative parameterization to the rate parameter, scale = 1 / rate. |
k |
kth-moment. |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
t |
t. |
The Gamma distribution with shape parameter and rate
parameter
has density:
for ,
.
Function :
expValGamma
gives the expected value.
varGamma
gives the variance.
kthMomentGamma
gives the kth moment.
expValLimGamma
gives the limited mean.
expValTruncGamma
gives the truncated mean.
stopLossGamma
gives the stop-loss.
meanExcessGamma
gives the mean excess loss.
VatRGamma
gives the Value-at-Risk.
TVatRGamma
gives the Tail Value-at-Risk.
mgfGamma
gives the moment generating function (MGF).
Invalid parameter values will return an error detailing which parameter is problematic.
Function VatRGamma is a wrapper for the qgamma
function stats package.
# With scale parameter expValGamma(shape = 3, scale = 4) # With rate parameter expValGamma(shape = 3, rate = 0.25) # With scale parameter varGamma(shape = 3, scale = 4) # With rate parameter varGamma(shape = 3, rate = 0.25) # With scale parameter kthMomentGamma(k = 2, shape = 3, scale = 4) # With rate parameter kthMomentGamma(k = 2, shape = 3, rate = 0.25) # With scale parameter expValLimGamma(d = 2, shape = 3, scale = 4) # With rate parameter expValLimGamma(d = 2, shape = 3, rate = 0.25) # With scale parameter expValTruncGamma(d = 2, shape = 3, scale = 4) # With rate parameter expValTruncGamma(d = 2, shape = 3, rate = 0.25) # values greather than d expValTruncGamma(d = 2, shape = 3, rate = 0.25, less.than.d = FALSE) # With scale parameter stopLossGamma(d = 2, shape = 3, scale = 4) # With rate parameter stopLossGamma(d = 2, shape = 3, rate = 0.25) # With scale parameter meanExcessGamma(d = 2, shape = 3, scale = 4) # With rate parameter meanExcessGamma(d = 2, shape = 3, rate = 0.25) # With scale parameter VatRGamma(kap = .2, shape = 3, scale = 4) # With rate parameter VatRGamma(kap = .2, shape = 3, rate = 0.25) # With scale parameter TVatRGamma(kap = .2, shape = 3, scale = 4) # With rate parameter TVatRGamma(kap = .2, shape = 3, rate = 0.25) mgfGamma(t = 1, shape = 3, rate = 5)
# With scale parameter expValGamma(shape = 3, scale = 4) # With rate parameter expValGamma(shape = 3, rate = 0.25) # With scale parameter varGamma(shape = 3, scale = 4) # With rate parameter varGamma(shape = 3, rate = 0.25) # With scale parameter kthMomentGamma(k = 2, shape = 3, scale = 4) # With rate parameter kthMomentGamma(k = 2, shape = 3, rate = 0.25) # With scale parameter expValLimGamma(d = 2, shape = 3, scale = 4) # With rate parameter expValLimGamma(d = 2, shape = 3, rate = 0.25) # With scale parameter expValTruncGamma(d = 2, shape = 3, scale = 4) # With rate parameter expValTruncGamma(d = 2, shape = 3, rate = 0.25) # values greather than d expValTruncGamma(d = 2, shape = 3, rate = 0.25, less.than.d = FALSE) # With scale parameter stopLossGamma(d = 2, shape = 3, scale = 4) # With rate parameter stopLossGamma(d = 2, shape = 3, rate = 0.25) # With scale parameter meanExcessGamma(d = 2, shape = 3, scale = 4) # With rate parameter meanExcessGamma(d = 2, shape = 3, rate = 0.25) # With scale parameter VatRGamma(kap = .2, shape = 3, scale = 4) # With rate parameter VatRGamma(kap = .2, shape = 3, rate = 0.25) # With scale parameter TVatRGamma(kap = .2, shape = 3, scale = 4) # With rate parameter TVatRGamma(kap = .2, shape = 3, rate = 0.25) mgfGamma(t = 1, shape = 3, rate = 5)
Inverse Gaussian distribution with mean and shape parameter
.
expValIG(mean, shape = dispersion * mean^2, dispersion = shape/mean^2) varIG(mean, shape = dispersion * mean^2, dispersion = shape/mean^2) expValLimIG(d, mean, shape = dispersion * mean^2, dispersion = shape/mean^2) expValTruncIG( d, mean, shape = dispersion * mean^2, dispersion = shape/mean^2, less.than.d = TRUE ) stopLossIG(d, mean, shape = dispersion * mean^2, dispersion = shape/mean^2) meanExcessIG(d, mean, shape = dispersion * mean^2, dispersion = shape/mean^2) VatRIG(kap, mean, shape = dispersion * mean^2, dispersion = shape/mean^2) TVatRIG(kap, mean, shape = dispersion * mean^2, dispersion = shape/mean^2) mgfIG(t, mean, shape = dispersion * mean^2, dispersion = shape/mean^2)
expValIG(mean, shape = dispersion * mean^2, dispersion = shape/mean^2) varIG(mean, shape = dispersion * mean^2, dispersion = shape/mean^2) expValLimIG(d, mean, shape = dispersion * mean^2, dispersion = shape/mean^2) expValTruncIG( d, mean, shape = dispersion * mean^2, dispersion = shape/mean^2, less.than.d = TRUE ) stopLossIG(d, mean, shape = dispersion * mean^2, dispersion = shape/mean^2) meanExcessIG(d, mean, shape = dispersion * mean^2, dispersion = shape/mean^2) VatRIG(kap, mean, shape = dispersion * mean^2, dispersion = shape/mean^2) TVatRIG(kap, mean, shape = dispersion * mean^2, dispersion = shape/mean^2) mgfIG(t, mean, shape = dispersion * mean^2, dispersion = shape/mean^2)
mean |
mean (location) parameter |
shape |
shape parameter |
dispersion |
alternative parameterization to the shape parameter, dispersion = 1 / rate. |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
t |
t. |
The Inverse Gaussian distribution with
Function :
expValIG
gives the expected value.
varIG
gives the variance.
expValLimIG
gives the limited mean.
expValTruncIG
gives the truncated mean.
stopLossIG
gives the stop-loss.
meanExcessIG
gives the mean excess loss.
VatRIG
gives the Value-at-Risk.
TVatRIG
gives the Tail Value-at-Risk.
mgfIG
gives the moment generating function (MGF).
Invalid parameter values will return an error detailing which parameter is problematic.
Function VatRIG is a wrapper for the qinvgauss
function from the statmod package.
expValIG(mean = 2, shape = 5) varIG(mean = 2, shape = 5) expValLimIG(d = 2, mean = 2, shape = 5) expValTruncIG(d = 2, mean = 2, shape = 5) stopLossIG(d = 2, mean = 2, shape = 5) meanExcessIG(d = 2, mean = 2, shape = 5) VatRIG(kap = 0.99, mean = 2, shape = 5) TVatRIG(kap = 0.99, mean = 2, shape = 5) mgfIG(t = 1, mean = 2, shape = .5)
expValIG(mean = 2, shape = 5) varIG(mean = 2, shape = 5) expValLimIG(d = 2, mean = 2, shape = 5) expValTruncIG(d = 2, mean = 2, shape = 5) stopLossIG(d = 2, mean = 2, shape = 5) meanExcessIG(d = 2, mean = 2, shape = 5) VatRIG(kap = 0.99, mean = 2, shape = 5) TVatRIG(kap = 0.99, mean = 2, shape = 5) mgfIG(t = 1, mean = 2, shape = .5)
Computes CDF and simulations of the independence copula.
cIndependent(u1, u2, ...) crIndependent(numberSimulations = 10000, seed = 42)
cIndependent(u1, u2, ...) crIndependent(numberSimulations = 10000, seed = 42)
u1 , u2
|
points at which to evaluate the copula. |
... |
other parameters. |
numberSimulations |
Number of simulations. |
seed |
Simulation seed, 42 by default. |
The independence copula has CDF :
for .
Function :
cIndependent
returns the value of the copula.
crIndependent
returns simulated values of the copula.
cIndependent(u1 = .76, u2 = 0.4) crIndependent(numberSimulations = 10, seed = 42)
cIndependent(u1 = .76, u2 = 0.4) crIndependent(numberSimulations = 10, seed = 42)
Loglogistic distribution with shape parameter and scale
parameter
.
dLlogis(x, shape, rate = 1/scale, scale = 1/rate) pLlogis(q, shape, rate = 1/scale, scale = 1/rate, lower.tail = TRUE) expValLlogis(shape, rate = 1/scale, scale = 1/rate) varLlogis(shape, rate = 1/scale, scale = 1/rate) kthMomentLlogis(k, shape, rate = 1/scale, scale = 1/rate) expValLimLlogis(d, shape, rate = 1/scale, scale = 1/rate) expValTruncLlogis(d, shape, rate = 1/scale, scale = 1/rate, less.than.d = TRUE) stopLossLlogis(d, shape, rate = 1/scale, scale = 1/rate) meanExcessLlogis(d, shape, rate = 1/scale, scale = 1/rate) VatRLlogis(kap, shape, rate = 1/scale, scale = 1/rate) TVatRLlogis(kap, shape, rate = 1/scale, scale = 1/rate)
dLlogis(x, shape, rate = 1/scale, scale = 1/rate) pLlogis(q, shape, rate = 1/scale, scale = 1/rate, lower.tail = TRUE) expValLlogis(shape, rate = 1/scale, scale = 1/rate) varLlogis(shape, rate = 1/scale, scale = 1/rate) kthMomentLlogis(k, shape, rate = 1/scale, scale = 1/rate) expValLimLlogis(d, shape, rate = 1/scale, scale = 1/rate) expValTruncLlogis(d, shape, rate = 1/scale, scale = 1/rate, less.than.d = TRUE) stopLossLlogis(d, shape, rate = 1/scale, scale = 1/rate) meanExcessLlogis(d, shape, rate = 1/scale, scale = 1/rate) VatRLlogis(kap, shape, rate = 1/scale, scale = 1/rate) TVatRLlogis(kap, shape, rate = 1/scale, scale = 1/rate)
x , q
|
vector of quantiles. |
shape |
shape parameter |
rate |
rate parameter |
scale |
alternative parameterization to the rate parameter, scale = 1 / rate. |
lower.tail |
logical; if TRUE (default), probabilities are
|
k |
kth-moment. |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
The loglogistic distribution with shape parameter and scale parameter
has density:
for ,
.
Function :
dLlogis
gives the probability density function (PDF).
pLlogis
gives the cumulative density function (CDF).
expValLlogis
gives the expected value.
varLlogis
gives the variance.
kthMomentLlogis
gives the kth moment.
expValLimLlogis
gives the limited mean.
expValTruncLlogis
gives the truncated mean.
stopLossLlogis
gives the stop-loss.
meanExcessLlogis
gives the mean excess loss.
VatRLlogis
gives the Value-at-Risk.
TVatRLlogis
gives the Tail Value-at-Risk.
Invalid parameter values will return an error detailing which parameter is problematic.
dLlogis(x = 2, shape = 2, scale = 4) # With scale parameter pLlogis(q = 3, shape = 3, scale = 5) # With rate parameter pLlogis(q = 3, shape = 3, rate = 0.2) # Survival function pLlogis(q = 3, shape = 3, rate = 0.2, lower.tail = FALSE) expValLlogis(shape = 2, scale = 4) varLlogis(shape = 3, scale = 4) kthMomentLlogis(k = 3, shape = 5, scale = 4) expValLimLlogis(d = 2, shape = 2, scale = 4) # With rate parameter expValTruncLlogis(d = 2, shape = 2, scale = 4) # Values greater than d expValTruncLlogis(d = 2, shape = 2, scale = 4, less.than.d = FALSE) stopLossLlogis(d = 2, shape = 2, scale = 4) meanExcessLlogis(d = 3, shape = 2, scale = 4) # With scale parameter VatRLlogis(kap = .2, shape = 2, scale = 4) # With rate parameter VatRLlogis(kap = .2, shape = 2, rate = 0.25) # With scale parameter TVatRLlogis(kap = .2, shape = 3, scale = 4) # With rate parameter TVatRLlogis(kap = .2, shape = 3, rate = 0.25)
dLlogis(x = 2, shape = 2, scale = 4) # With scale parameter pLlogis(q = 3, shape = 3, scale = 5) # With rate parameter pLlogis(q = 3, shape = 3, rate = 0.2) # Survival function pLlogis(q = 3, shape = 3, rate = 0.2, lower.tail = FALSE) expValLlogis(shape = 2, scale = 4) varLlogis(shape = 3, scale = 4) kthMomentLlogis(k = 3, shape = 5, scale = 4) expValLimLlogis(d = 2, shape = 2, scale = 4) # With rate parameter expValTruncLlogis(d = 2, shape = 2, scale = 4) # Values greater than d expValTruncLlogis(d = 2, shape = 2, scale = 4, less.than.d = FALSE) stopLossLlogis(d = 2, shape = 2, scale = 4) meanExcessLlogis(d = 3, shape = 2, scale = 4) # With scale parameter VatRLlogis(kap = .2, shape = 2, scale = 4) # With rate parameter VatRLlogis(kap = .2, shape = 2, rate = 0.25) # With scale parameter TVatRLlogis(kap = .2, shape = 3, scale = 4) # With rate parameter TVatRLlogis(kap = .2, shape = 3, rate = 0.25)
Lognormal distribution with mean and variance
.
expValLnorm(meanlog, sdlog) varLnorm(meanlog, sdlog) kthMomentLnorm(k, meanlog, sdlog) expValLimLnorm(d, meanlog, sdlog) expValTruncLnorm(d, meanlog, sdlog, less.than.d = TRUE) stopLossLnorm(d, meanlog, sdlog) meanExcessLnorm(d, meanlog, sdlog) VatRLnorm(kap, meanlog, sdlog) TVatRLnorm(kap, meanlog, sdlog)
expValLnorm(meanlog, sdlog) varLnorm(meanlog, sdlog) kthMomentLnorm(k, meanlog, sdlog) expValLimLnorm(d, meanlog, sdlog) expValTruncLnorm(d, meanlog, sdlog, less.than.d = TRUE) stopLossLnorm(d, meanlog, sdlog) meanExcessLnorm(d, meanlog, sdlog) VatRLnorm(kap, meanlog, sdlog) TVatRLnorm(kap, meanlog, sdlog)
meanlog |
location parameter |
sdlog |
standard deviation |
k |
kth-moment. |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
The Log-normal distribution with mean and standard deviation
has density:
for ,
.
Function :
expValLnorm
gives the expected value.
varLnorm
gives the variance.
kthMomentLnorm
gives the kth moment.
expValLimLnorm
gives the limited mean.
expValTruncLnorm
gives the truncated mean.
stopLossLnorm
gives the stop-loss.
meanExcessLnorm
gives the mean excess loss.
VatRLnorm
gives the Value-at-Risk.
TVatRLnorm
gives the Tail Value-at-Risk.
Invalid parameter values will return an error detailing which parameter is problematic.
Function VatRLnorm is a wrapper of the qlnorm
function from the stats package.
expValLnorm(meanlog = 3, sdlog = 5) varLnorm(meanlog = 3, sdlog = 5) kthMomentLnorm(k = 2, meanlog = 3, sdlog = 5) expValLimLnorm(d = 2, meanlog = 2, sdlog = 5) expValTruncLnorm(d = 2, meanlog = 2, sdlog = 5) # Values greater than d expValTruncLnorm(d = 2, meanlog = 2, sdlog = 5, less.than.d = FALSE) stopLossLnorm(d = 2, meanlog = 2, sdlog = 5) meanExcessLnorm(d = 2, meanlog = 2, sdlog = 5) VatRLnorm(kap = 0.8, meanlog = 3, sdlog = 5) TVatRLnorm(kap = 0.8, meanlog = 2, sdlog = 5)
expValLnorm(meanlog = 3, sdlog = 5) varLnorm(meanlog = 3, sdlog = 5) kthMomentLnorm(k = 2, meanlog = 3, sdlog = 5) expValLimLnorm(d = 2, meanlog = 2, sdlog = 5) expValTruncLnorm(d = 2, meanlog = 2, sdlog = 5) # Values greater than d expValTruncLnorm(d = 2, meanlog = 2, sdlog = 5, less.than.d = FALSE) stopLossLnorm(d = 2, meanlog = 2, sdlog = 5) meanExcessLnorm(d = 2, meanlog = 2, sdlog = 5) VatRLnorm(kap = 0.8, meanlog = 3, sdlog = 5) TVatRLnorm(kap = 0.8, meanlog = 2, sdlog = 5)
Logarithmic distribution with probability parameter .
dLogarithmic(x, prob) pLogarithmic(q, prob, lower.tail = TRUE) expValLogarithmic(prob) varLogarithmic(prob) VatRLogarithmic(kap, prob) mgfLogarithmic(t, prob) pgfLogarithmic(t, prob)
dLogarithmic(x, prob) pLogarithmic(q, prob, lower.tail = TRUE) expValLogarithmic(prob) varLogarithmic(prob) VatRLogarithmic(kap, prob) mgfLogarithmic(t, prob) pgfLogarithmic(t, prob)
x , q
|
vector of quantiles. |
prob |
probability parameter |
lower.tail |
logical; if TRUE (default), probabilities are
|
kap |
probability. |
t |
t. |
The Logarithmic distribution with probability parameter
has probability mass function :
,
for ,
and
].
Function :
dLogarithmic
gives the probability density function (PDF).
pLogarithmic
gives the cumulative density function (CDF).
expValLogarithmic
gives the expected value.
varLogarithmic
gives the variance.
VatRLogarithmic
gives the Value-at-Risk.
mgfLogarithmic
gives the moment generating function (MGF).
pgfLogarithmic
gives the probability generating function (MGF).
Invalid parameter values will return an error detailing which parameter is problematic.
dLogarithmic(x = 3, prob = 0.2) pLogarithmic(q = 3, prob = 0.2) expValLogarithmic(prob = 0.50) varLogarithmic(prob = 0.50) VatRLogarithmic(kap = 0.99, prob = 0.2) mgfLogarithmic(t = .2, prob = 0.50) pgfLogarithmic(t = .2, prob = 0.50)
dLogarithmic(x = 3, prob = 0.2) pLogarithmic(q = 3, prob = 0.2) expValLogarithmic(prob = 0.50) varLogarithmic(prob = 0.50) VatRLogarithmic(kap = 0.99, prob = 0.2) mgfLogarithmic(t = .2, prob = 0.50) pgfLogarithmic(t = .2, prob = 0.50)
Negative binomial distribution with parameters (number of successful
trials) and
(probability of success).
expValNBinom( size, prob = (1/(1 + beta)), beta = ((1 - prob)/prob), nb_tries = FALSE ) varNBinom( size, prob = (1/(1 + beta)), beta = ((1 - prob)/prob), nb_tries = FALSE ) mgfNBinom( t, size, prob = (1/(1 + beta)), beta = ((1 - prob)/prob), nb_tries = FALSE ) pgfNBinom( t, size, prob = (1/(1 + beta)), beta = ((1 - prob)/prob), nb_tries = FALSE )
expValNBinom( size, prob = (1/(1 + beta)), beta = ((1 - prob)/prob), nb_tries = FALSE ) varNBinom( size, prob = (1/(1 + beta)), beta = ((1 - prob)/prob), nb_tries = FALSE ) mgfNBinom( t, size, prob = (1/(1 + beta)), beta = ((1 - prob)/prob), nb_tries = FALSE ) pgfNBinom( t, size, prob = (1/(1 + beta)), beta = ((1 - prob)/prob), nb_tries = FALSE )
size |
Number of successful trials. |
prob |
Probability of success in each trial. |
beta |
Alternative parameterization of the negative binomial distribution where beta = (1 - p) / p. |
nb_tries |
logical; if |
t |
t. |
When is the number of failures until the
th success,
with a probability
of a success, the negative binomial has density:
for
When is the number of trials until the
th success,
with a probability
of a success, the negative binomial has density:
for
The alternative parameterization of the negative binomial with parameter
, and
being the number of trials, has density:
for
Function :
expValNBinom
gives the expected value.
varNBinom
gives the variance.
mgfNBinom
gives the moment generating function (MGF).
pgfNBinom
gives the probability generating function (PGF).
Invalid parameter values will return an error detailing which parameter is problematic.
# Where k is the number of trials for a rth success expValNBinom(size = 2, prob = .4) # Where k is the number of failures before a rth success expValNBinom(size = 2, prob = .4, nb_tries = TRUE) # With alternative parameterization where k is the number of trials expValNBinom(size = 2, beta = 1.5) # Where k is the number of trials for a rth success varNBinom(size = 2, prob = .4) # Where k is the number of failures before a rth success varNBinom(size = 2, prob = .4, nb_tries = TRUE) # With alternative parameterization where k is the number of trials varNBinom(size = 2, beta = 1.5) mgfNBinom(t = 1, size = 4, prob = 0.5) pgfNBinom(t = 5, size = 3, prob = 0.3)
# Where k is the number of trials for a rth success expValNBinom(size = 2, prob = .4) # Where k is the number of failures before a rth success expValNBinom(size = 2, prob = .4, nb_tries = TRUE) # With alternative parameterization where k is the number of trials expValNBinom(size = 2, beta = 1.5) # Where k is the number of trials for a rth success varNBinom(size = 2, prob = .4) # Where k is the number of failures before a rth success varNBinom(size = 2, prob = .4, nb_tries = TRUE) # With alternative parameterization where k is the number of trials varNBinom(size = 2, beta = 1.5) mgfNBinom(t = 1, size = 4, prob = 0.5) pgfNBinom(t = 5, size = 3, prob = 0.3)
Normal distribution
expValNorm(mean, sd) varNorm(mean, sd) expValLimNorm(d, mean = 0, sd = 1) expValTruncNorm(d, mean = 0, sd = 1, less.than.d = TRUE) stopLossNorm(d, mean = 0, sd = 1) meanExcessNorm(d, mean = 0, sd = 1) VatRNorm(kap, mean = 0, sd = 1) TVatRNorm(kap, mean = 0, sd = 1) mgfNorm(t, mean = 0, sd = 1)
expValNorm(mean, sd) varNorm(mean, sd) expValLimNorm(d, mean = 0, sd = 1) expValTruncNorm(d, mean = 0, sd = 1, less.than.d = TRUE) stopLossNorm(d, mean = 0, sd = 1) meanExcessNorm(d, mean = 0, sd = 1) VatRNorm(kap, mean = 0, sd = 1) TVatRNorm(kap, mean = 0, sd = 1) mgfNorm(t, mean = 0, sd = 1)
mean |
mean (location) parameter |
sd |
standard deviation |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
t |
t. |
The Normal distribution with mean and standard deviation
has density:
for ,
.
Function :
expValNorm
gives the expected value.
varNorm
gives the variance.
expValLimNorm
gives the limited mean.
expValTruncNorm
gives the truncated mean.
stopLossNorm
gives the stop-loss.
meanExcessNorm
gives the mean excess loss.
VatRNorm
gives the Value-at-Risk.
TVatRNorm
gives the Tail Value-at-Risk.
mgfNorm
gives the moment generating function (MGF).
Invalid parameter values will return an error detailing which parameter is problematic.
Function VatRNorm is a wrapper of the qnorm
function from the stats package.
expValNorm(mean = 3, sd = 5) varNorm(mean = 3, sd = 5) expValLimNorm(d = 2, mean = 2, sd = 5) expValTruncNorm(d = 2, mean = 2, sd = 5) stopLossNorm(d = 2, mean = 2, sd = 5) meanExcessNorm(d = 2, mean = 2, sd = 5) VatRNorm(kap = 0.8, mean = 3, sd = 5) TVatRNorm(kap = 0.8, mean = 2, sd = 5) mgfNorm(t = 1, mean = 3, sd = 5)
expValNorm(mean = 3, sd = 5) varNorm(mean = 3, sd = 5) expValLimNorm(d = 2, mean = 2, sd = 5) expValTruncNorm(d = 2, mean = 2, sd = 5) stopLossNorm(d = 2, mean = 2, sd = 5) meanExcessNorm(d = 2, mean = 2, sd = 5) VatRNorm(kap = 0.8, mean = 3, sd = 5) TVatRNorm(kap = 0.8, mean = 2, sd = 5) mgfNorm(t = 1, mean = 3, sd = 5)
Pareto distribution with shape parameter and rate
parameter
.
dPareto(x, shape, rate = 1/scale, scale = 1/rate) pPareto(q, shape, rate = 1/scale, scale = 1/rate, lower.tail = TRUE) expValPareto(shape, rate = 1/scale, scale = 1/rate) varPareto(shape, rate = 1/scale, scale = 1/rate) kthMomentPareto(k, shape, rate = 1/scale, scale = 1/rate) expValLimPareto(d, shape, rate = 1/scale, scale = 1/rate) expValTruncPareto(d, shape, rate = 1/scale, scale = 1/rate, less.than.d = TRUE) stopLossPareto(d, shape, rate = 1/scale, scale = 1/rate) meanExcessPareto(d, shape, rate = 1/scale, scale = 1/rate) VatRPareto(kap, shape, rate = 1/scale, scale = 1/rate) TVatRPareto(kap, shape, rate = 1/scale, scale = 1/rate)
dPareto(x, shape, rate = 1/scale, scale = 1/rate) pPareto(q, shape, rate = 1/scale, scale = 1/rate, lower.tail = TRUE) expValPareto(shape, rate = 1/scale, scale = 1/rate) varPareto(shape, rate = 1/scale, scale = 1/rate) kthMomentPareto(k, shape, rate = 1/scale, scale = 1/rate) expValLimPareto(d, shape, rate = 1/scale, scale = 1/rate) expValTruncPareto(d, shape, rate = 1/scale, scale = 1/rate, less.than.d = TRUE) stopLossPareto(d, shape, rate = 1/scale, scale = 1/rate) meanExcessPareto(d, shape, rate = 1/scale, scale = 1/rate) VatRPareto(kap, shape, rate = 1/scale, scale = 1/rate) TVatRPareto(kap, shape, rate = 1/scale, scale = 1/rate)
x , q
|
vector of quantiles. |
shape |
shape parameter |
rate |
rate parameter |
scale |
alternative parameterization to the rate parameter, scale = 1 / rate. |
lower.tail |
logical; if TRUE (default), probabilities are
|
k |
kth-moment. |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
The Pareto distribution with rate parameter as well as shape
parameter
has density:
for ,
.
Function :
dPareto
gives the probability density function (PDF).
pPareto
gives the cumulative density function (CDF).
expValPareto
gives the expected value.
varPareto
gives the variance.
kthMomentPareto
gives the kth moment.
expValLimPareto
gives the limited mean.
expValTruncPareto
gives the truncated mean.
stopLossPareto
gives the stop-loss.
meanExcessPareto
gives the mean excess loss.
VatRPareto
gives the Value-at-Risk.
TVatRPareto
gives the Tail Value-at-Risk.
Invalid parameter values will return an error detailing which parameter is problematic.
# With scale parameter dPareto(x = 2, shape = 2, scale = 5) # With rate parameter dPareto(x = 2, shape = 2, rate = .20) # With scale parameter pPareto(q = 2, shape = 2, scale = 5) # With rate parameter pPareto(q = 2, shape = 2, rate = 0.20) # Survival function pPareto(q = 2, shape = 2, rate = 0.20, lower.tail = FALSE) # With scale parameter expValPareto(shape = 5, scale = 0.5) # With rate parameter expValPareto(shape = 5, rate = 2) # With scale parameter varPareto(shape = 5, scale = 0.5) # With rate parameter varPareto(shape = 5, rate = 2) # With scale parameter kthMomentPareto(k = 4, shape = 5, scale = 0.5) # With rate parameter kthMomentPareto(k = 4, shape = 5, rate = 2) # With scale parameter expValLimPareto(d = 4, shape = 5, scale = 0.5) # With rate parameter expValLimPareto(d = 4, shape = 5, rate = 2) # With scale parameter expValTruncPareto(d = 4, shape = 5, scale = 0.5) # With rate parameter expValTruncPareto(d = 4, shape = 5, rate = 2) # With scale parameter stopLossPareto(d = 2, shape = 5, scale = 0.5) # With rate parameter stopLossPareto(d = 2, shape = 5, rate = 2) # With scale parameter meanExcessPareto(d = 6, shape = 5, scale = 0.5) # With rate parameter meanExcessPareto(d = 6, shape = 5, rate = 2) # With scale parameter VatRPareto(kap = .99, shape = 5, scale = 0.5) # With rate parameter VatRPareto(kap = .99, shape = 5, rate = 2) # With scale parameter TVatRPareto(kap = .99, shape = 5, scale = 0.5) # With rate parameter TVatRPareto(kap = .99, shape = 5, rate = 2)
# With scale parameter dPareto(x = 2, shape = 2, scale = 5) # With rate parameter dPareto(x = 2, shape = 2, rate = .20) # With scale parameter pPareto(q = 2, shape = 2, scale = 5) # With rate parameter pPareto(q = 2, shape = 2, rate = 0.20) # Survival function pPareto(q = 2, shape = 2, rate = 0.20, lower.tail = FALSE) # With scale parameter expValPareto(shape = 5, scale = 0.5) # With rate parameter expValPareto(shape = 5, rate = 2) # With scale parameter varPareto(shape = 5, scale = 0.5) # With rate parameter varPareto(shape = 5, rate = 2) # With scale parameter kthMomentPareto(k = 4, shape = 5, scale = 0.5) # With rate parameter kthMomentPareto(k = 4, shape = 5, rate = 2) # With scale parameter expValLimPareto(d = 4, shape = 5, scale = 0.5) # With rate parameter expValLimPareto(d = 4, shape = 5, rate = 2) # With scale parameter expValTruncPareto(d = 4, shape = 5, scale = 0.5) # With rate parameter expValTruncPareto(d = 4, shape = 5, rate = 2) # With scale parameter stopLossPareto(d = 2, shape = 5, scale = 0.5) # With rate parameter stopLossPareto(d = 2, shape = 5, rate = 2) # With scale parameter meanExcessPareto(d = 6, shape = 5, scale = 0.5) # With rate parameter meanExcessPareto(d = 6, shape = 5, rate = 2) # With scale parameter VatRPareto(kap = .99, shape = 5, scale = 0.5) # With rate parameter VatRPareto(kap = .99, shape = 5, rate = 2) # With scale parameter TVatRPareto(kap = .99, shape = 5, scale = 0.5) # With rate parameter TVatRPareto(kap = .99, shape = 5, rate = 2)
Poisson distribution with rate parameter .
expValPois(lambda) varPois(lambda) expValTruncPois(d, lambda, k0, less.than.d = TRUE) TVatRPois(kap, lambda, k0) mgfPois(t, lambda) pgfPois(t, lambda)
expValPois(lambda) varPois(lambda) expValTruncPois(d, lambda, k0, less.than.d = TRUE) TVatRPois(kap, lambda, k0) mgfPois(t, lambda) pgfPois(t, lambda)
lambda |
Rate parameter |
d |
cut-off value. |
k0 |
point up to which to sum the distribution for the approximation. |
less.than.d |
logical; if |
kap |
probability. |
t |
t. |
The Poisson distribution with rate parameter
has probability mass function :
for , and
Function :
expValPois
gives the expected value.
varPois
gives the variance.
expValTruncPois
gives the truncated mean.
TVatRPois
gives the Tail Value-at-Risk.
mgfPois
gives the moment generating function (MGF).
pgfPois
gives the probability generating function (PGF).
Invalid parameter values will return an error detailing which parameter is problematic.
expValPois(lambda = 3) varPois(lambda = 3) expValTruncPois(d = 0, lambda = 2, k0 = 2E2, less.than.d = FALSE) expValTruncPois(d = 2, lambda = 2, k0 = 2E2, less.than.d = TRUE) TVatRPois(kap = 0.8, lambda = 3, k0 = 2E2) mgfPois(t = 1, lambda = 3) pgfPois(t = 1, lambda = 3)
expValPois(lambda = 3) varPois(lambda = 3) expValTruncPois(d = 0, lambda = 2, k0 = 2E2, less.than.d = FALSE) expValTruncPois(d = 2, lambda = 2, k0 = 2E2, less.than.d = TRUE) TVatRPois(kap = 0.8, lambda = 3, k0 = 2E2) mgfPois(t = 1, lambda = 3) pgfPois(t = 1, lambda = 3)
Uniform distribution with min and max
.
expValUnif(min = 0, max = 1) varUnif(min = 0, max = 1) kthMomentUnif(k, min = 0, max = 1) expValLimUnif(d, min = 0, max = 1) expValTruncUnif(d, min = 0, max = 1, less.than.d = TRUE) stopLossUnif(d, min = 0, max = 1) meanExcessUnif(d, min = 0, max = 1) VatRUnif(kap, min = 0, max = 1) TVatRUnif(kap, min = 0, max = 1) mgfUnif(t, min = 0, max = 1)
expValUnif(min = 0, max = 1) varUnif(min = 0, max = 1) kthMomentUnif(k, min = 0, max = 1) expValLimUnif(d, min = 0, max = 1) expValTruncUnif(d, min = 0, max = 1, less.than.d = TRUE) stopLossUnif(d, min = 0, max = 1) meanExcessUnif(d, min = 0, max = 1) VatRUnif(kap, min = 0, max = 1) TVatRUnif(kap, min = 0, max = 1) mgfUnif(t, min = 0, max = 1)
min , max
|
lower and upper limits of the distribution. Must be finite. |
k |
kth-moment. |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
t |
t. |
The (continuous) uniform distribution with min and max parameters
and
respectively has density:
for .
Function :
expValUnif
gives the expected value.
varUnif
gives the variance.
kthMomentUnif
gives the kth moment.
expValLimUnif
gives the limited mean.
expValTruncUnif
gives the truncated mean.
stopLossUnif
gives the stop-loss.
meanExcessUnif
gives the mean excess loss.
VatRUnif
gives the Value-at-Risk.
TVatRUnif
gives the Tail Value-at-Risk.
Invalid parameter values will return an error detailing which parameter is problematic.
expValUnif(min = 3, max = 4) varUnif(min = 3, max = 4) kthMomentUnif(k = 2, min = 3, max = 4) expValLimUnif(d = 3, min = 2, max = 4) expValTruncUnif(d = 3, min = 2, max = 4) # Values greather than d expValTruncUnif(d = 3, min = 2, max = 4, less.than.d = FALSE) stopLossUnif(d = 3, min = 2, max = 4) meanExcessUnif(d = 2, min = 2, max = 4) VatRUnif(kap = .99, min = 3, max = 4) TVatRUnif(kap = .99, min = 3, max = 4) mgfUnif(t = 2, min = 0, max = 1)
expValUnif(min = 3, max = 4) varUnif(min = 3, max = 4) kthMomentUnif(k = 2, min = 3, max = 4) expValLimUnif(d = 3, min = 2, max = 4) expValTruncUnif(d = 3, min = 2, max = 4) # Values greather than d expValTruncUnif(d = 3, min = 2, max = 4, less.than.d = FALSE) stopLossUnif(d = 3, min = 2, max = 4) meanExcessUnif(d = 2, min = 2, max = 4) VatRUnif(kap = .99, min = 3, max = 4) TVatRUnif(kap = .99, min = 3, max = 4) mgfUnif(t = 2, min = 0, max = 1)
Discrete uniform distribution with min and max
.
pUnifD(q, min = 0, max = 1) dUnifD(x, min = 0, max = 1) varUnifD(min = 0, max = 1) expValUnifD(min = 0, max = 1)
pUnifD(q, min = 0, max = 1) dUnifD(x, min = 0, max = 1) varUnifD(min = 0, max = 1) expValUnifD(min = 0, max = 1)
min , max
|
lower and upper limits of the distribution. Must be finite. |
x , q
|
vector of quantiles. |
The (discrete) uniform distribution with min and max parameters
and
respectively has density:
for .
Function :
dUnifD
gives the probability density function (PDF).
pUnifD
gives the cumulative density function (CDF).
expValUnifD
gives the expected value.
varUnifD
gives the variance.
Invalid parameter values will return an error detailing which parameter is problematic.
pUnifD(q = 0.2, min = 0, max = 1) dUnifD(min = 0, max = 1) varUnifD(min = 0, max = 1) expValUnifD(min = 0, max = 1)
pUnifD(q = 0.2, min = 0, max = 1) dUnifD(min = 0, max = 1) varUnifD(min = 0, max = 1) expValUnifD(min = 0, max = 1)
Weibull distribution with shape parameter and rate parameter
.
expValWeibull(shape, rate = 1/scale, scale = 1/rate) varWeibull(shape, rate = 1/scale, scale = 1/rate) kthMomentWeibull(k, shape, rate = 1/scale, scale = 1/rate) expValLimWeibull(d, shape, rate = 1/scale, scale = 1/rate) expValTruncWeibull( d, shape, rate = 1/scale, scale = 1/rate, less.than.d = TRUE ) stopLossWeibull(d, shape, rate = 1/scale, scale = 1/rate) meanExcessWeibull(d, shape, rate = 1/scale, scale = 1/rate) VatRWeibull(kap, shape, rate = 1/scale, scale = 1/rate) TVatRWeibull(kap, shape, rate = 1/scale, scale = 1/rate)
expValWeibull(shape, rate = 1/scale, scale = 1/rate) varWeibull(shape, rate = 1/scale, scale = 1/rate) kthMomentWeibull(k, shape, rate = 1/scale, scale = 1/rate) expValLimWeibull(d, shape, rate = 1/scale, scale = 1/rate) expValTruncWeibull( d, shape, rate = 1/scale, scale = 1/rate, less.than.d = TRUE ) stopLossWeibull(d, shape, rate = 1/scale, scale = 1/rate) meanExcessWeibull(d, shape, rate = 1/scale, scale = 1/rate) VatRWeibull(kap, shape, rate = 1/scale, scale = 1/rate) TVatRWeibull(kap, shape, rate = 1/scale, scale = 1/rate)
shape |
shape parameter |
rate |
rate parameter |
scale |
alternative parameterization to the rate parameter, scale = 1 / rate. |
k |
kth-moment. |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
The Weibull distribution with shape parameter and rate parameter
has density:
for ,
,
Function :
expValWeibull
gives the expected value.
varWeibull
gives the variance.
kthMomentWeibull
gives the kth moment.
expValLimWeibull
gives the limited mean.
expValTruncWeibull
gives the truncated mean.
stopLossWeibull
gives the stop-loss.
meanExcessWeibull
gives the mean excess loss.
VatRWeibull
gives the Value-at-Risk.
TVatRWeibull
gives the Tail Value-at-Risk.
Invalid parameter values will return an error detailing which parameter is problematic.
# With scale parameter expValWeibull(shape = 2, scale = 5) # With rate parameter expValWeibull(shape = 2, rate = 0.2) # With scale parameter varWeibull(shape = 2, scale = 5) # With rate parameter varWeibull(shape = 2, rate = 0.2) # With scale parameter kthMomentWeibull(k = 2, shape = 2, scale = 5) # With rate parameter kthMomentWeibull(k = 2, shape = 2, rate = 0.2) # With scale parameter expValLimWeibull(d = 2, shape = 2, scale = 5) # With rate parameter expValLimWeibull(d = 2, shape = 2, rate = 0.2) # With scale parameter expValTruncWeibull(d = 2, shape = 2, scale = 5) # With rate parameter expValTruncWeibull(d = 2, shape = 2, rate = 0.2) # Mean of values greater than d expValTruncWeibull(d = 2, shape = 2, rate = 0.2, less.than.d = FALSE) # With scale parameter stopLossWeibull(d = 2, shape = 3, scale = 4) # With rate parameter stopLossWeibull(d = 2, shape = 3, rate = 0.25) # With scale parameter meanExcessWeibull(d = 2, shape = 3, scale = 4) # With rate parameter meanExcessWeibull(d = 2, shape = 3, rate = 0.25) # With scale parameter VatRWeibull(kap = .2, shape = 3, scale = 4) # With rate parameter VatRWeibull(kap = .2, shape = 3, rate = 0.25) # With scale parameter TVatRWeibull(kap = .2, shape = 3, scale = 4) # With rate parameter TVatRWeibull(kap = .2, shape = 3, rate = 0.25)
# With scale parameter expValWeibull(shape = 2, scale = 5) # With rate parameter expValWeibull(shape = 2, rate = 0.2) # With scale parameter varWeibull(shape = 2, scale = 5) # With rate parameter varWeibull(shape = 2, rate = 0.2) # With scale parameter kthMomentWeibull(k = 2, shape = 2, scale = 5) # With rate parameter kthMomentWeibull(k = 2, shape = 2, rate = 0.2) # With scale parameter expValLimWeibull(d = 2, shape = 2, scale = 5) # With rate parameter expValLimWeibull(d = 2, shape = 2, rate = 0.2) # With scale parameter expValTruncWeibull(d = 2, shape = 2, scale = 5) # With rate parameter expValTruncWeibull(d = 2, shape = 2, rate = 0.2) # Mean of values greater than d expValTruncWeibull(d = 2, shape = 2, rate = 0.2, less.than.d = FALSE) # With scale parameter stopLossWeibull(d = 2, shape = 3, scale = 4) # With rate parameter stopLossWeibull(d = 2, shape = 3, rate = 0.25) # With scale parameter meanExcessWeibull(d = 2, shape = 3, scale = 4) # With rate parameter meanExcessWeibull(d = 2, shape = 3, rate = 0.25) # With scale parameter VatRWeibull(kap = .2, shape = 3, scale = 4) # With rate parameter VatRWeibull(kap = .2, shape = 3, rate = 0.25) # With scale parameter TVatRWeibull(kap = .2, shape = 3, scale = 4) # With rate parameter TVatRWeibull(kap = .2, shape = 3, rate = 0.25)